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Abstract: Identification of a ligand binding site on a protein is pivotal to drug discovery. To date, no reliable
and computationally feasible general approach to this problem has been published. Here we present an
automated efficient method for determining binding sites on proteins for potential ligands without any a
priori knowledge. Our method is based upon the multiscale concept where we deal with a hierarchy of
models generated using a k-means clustering algorithm for the potential ligand. This is done in a simple
approach whereby a potential ligand is represented by a growing number of feature points. At each increasing
level of detail, a pruning of potential binding site is performed. A nonbonding energy function is used to
score the interactions between molecules at each step. The technique was successfully employed to seven
protein-ligand complexes. In the current paper we show that the algorithm considerably reduces the
computational effort required to solve this problem. This approach offers real opportunities for exploiting
the large number of structures that will evolve from structural genomics.

Introduction

Genomics, proteomics and bioinformatics are yielding novel
therapeutic targets for drug discovery efforts at a rapid rate.1,2

The genome projects reveal a plethora of new sequences. Their
3D structures will be solved by various techniques such as X-ray
crystallography or nuclear magnetic resonance (NMR). Even
once detailed structures are known, the design of candidate drugs
that may interact with these targets is a difficult task. Novel
theoretical approaches could become a major avenue for drug
discovery efforts and improve our ability to deal with the
abundance of information at the post-genomic era.3 In a much
publicised screen-saver project (http://www.ud.com) we have
initiated a massively distributed search among a virtual library
of billions of small molecules for compounds that can bind to
known protein binding sites. In such circumstances, a matching
algorithm such as DOCK, which employs spheres to model the
binding site,4-6 or THINK, which orients the ligand toward
chemically favorable interactions zones,7 can rapidly dock the
potential ligand. Here we provide a methodology that addresses
the converse question: given a drug candidate molecule and a
protein’s 3D structure, where will the drug candidate bind?

Let us assume the ligand and host molecules are rigid.
Regrettably, a brute force search, where the ligand-host
interaction energy is evaluated at all possible docking configura-

tions, cannot be completed in a reasonable amount of computing
time, particularly when employing a large protein or ligand.
To gain some idea of the runtime requirements we might
consider that a typical protein host might occupy a volume of
some 60 Å3. Even with a moderate translational resolution of 1
Å, this leaves 216 000 translations to search. Given a reasonable
rotational resolution of 20° in each axis, and given that a
potential ligand and protein might contain 35 and 3500 atoms,
respectively, 1.5× 1014 pairwise nonbonding energy evaluations
will be needed to scan the complete range of possible docking
configurations. Even if one can evict 99% of the points by
employing various assumptions, we will still require 1.5× 1012

evaluations. As a result, brute force approaches such as GRID8,9

are limited to small probe groups and cannot handle a detailed
ligand in a reasonable computing time. Clearly, one of the major
challenges of ligand-host docking is of reducing the number
of energy evaluations that need to be performed in order to
locate the optimum binding position.

A different approach is based on a docking simulation in a
given potential force field via a global optimization algorithm
that minimizes the ligand protein interaction energy: methods
such as Monte Carlo simulated annealing,10-12 genetic algo-
rithms,13-16 or the multiple copy simultaneous search (MCSS)
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method17 have proved successful in this respect. In general, these
methodologies give reasonable results provided the initial
position of the ligand is within, or proximate to, the binding
site of the host molecule. By starting the simulation in a good
position, we can restrict the number of docking configurations
that need to be considered and avoid many of the local
entrapments. Failure to assist the optimizer in this manner will
result in an extremely long calculation that might fail to detect
the global minimum.

In the face of such optimization difficulties, we devised a
different approach to solve the binding site location problem.
In a brute force approach, numerous operations are redundant
since in many configurations the ligand atoms will be either
too distant or close to the protein atoms. This work relies on
the hypothesis that we can effectively evict these configurations
at an early stage by employing a filtering operation thus saving
a substantial amount of computing time. This strategy is adapted
from methods developed in the fields of signal and image
processing: the so-calledmultiscale approach.18,19Applying this
approach enables us to return to a simpler, rapid brute force
style search, removing the need for an elaborate optimization
protocol.

Methods

The multiscale approachrelies on a construct known as ascale-
space decomposition.18,19 This involves the application of ascaling
operator to the original data. The effect of the scaling operator is to

remove the information in our data corresponding to the highest level
of detail. With the fine detail removed, the larger scale features in the
data are emphasized. Repeated application of the scaling operator returns
larger and larger structures in our data until either the required scale
has been achieved or there is no more information left in the resulting
decomposition. The selection of the scaling operator is of crucial
importance if multiscale analysis viascale-space decompositionis to
be completed successfully.

We model the ligand at various scales by employing a simple yet
powerful method: thek-means-clustering algorithm.20,21 By using a
series ofk-meansgenerated clusters, we obtain series of ligand models,
each containing one more feature point than the previous model. These
feature points are well distributed to ensure that each model yields the
best possible description of the ligand for the number of points
generated. In ourk-meansprocedure implementation,n atomsx1, x2,
..., xn fall into k clusters,k < n. Let mi be the mean position of the
atomic coordinates in clusteri. If the clusters are well separated, we
can use a minimum-distance classifier to separate them: atomx is in
clusteri if the distance betweenx andmi is the minimum of all thek
distances. Since there is no definite way to initialize the mean values,
it is common to make initial guesses for the meansm1, m2, ..., mk. At
the next stage, until there are no changes in any mean, we use the
estimated means to classify the atoms into clusters: for all clusters,
replacemi with the mean position of all of the atoms for clusteri. Figure
1 depictsk meansfor an increasing number of feature points (from 1
to 9) on the HIV-reverse transcriptase inhibitor, nevirapine.22 The initial
cluster is at the mean position of the ligand: all of the atoms in the
ligand belong to this initial cluster (Figure 1a). To initialize the means
for the second cluster, we search for the atom that is furthest away
from the initial cluster. This atom then becomes the temporary center
of the new cluster. All atoms that are closer to this cluster center than(16) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.;
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Figure 1. Example of models generated for the HIV-reverse transcriptase inhibitor nevirapine.
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their currently assigned cluster center change identities and are marked
as belonging to the new center. The position of the cluster centers are
then iterated upon to self-consistency so that each cluster center is
positioned at the average position of the atoms that belong to the cluster
(Figure 1b). This process may be repeated as many times as there are
atoms in the ligand, with each iteration generating the next model
(Figure 1c-i).

A rapid, grid-based method is employed for energy evaluation8,9 by
precalculating ligand-protein pairwise interaction energies to form a
lookup table. Energies are linearly interpolated from the grid. The
energy is computed by eq 1 with the Consistent Valence Force Field
(CVFF)23 all-atom model nonbonding 12-6 Lennard-Jones and elec-
trostatic terms.Ai,j is the repulsion parameter for the two (i,j) atoms,
Bi,j is their attractive polarizability parameter,qi is the partial charge,
and ε is the dielectric constant. Atomi belongs to a feature pointk,
andj is a protein grid point. It should be noted that the atoms’ sum in
all k feature points is identical to the number of atoms in the ligand.
The energy is calculated between alli atoms in feature pointk and
each protein atom (j). The process is repeated for allk feature points.
The atom types in feature pointk are different but their distances to
protein’s atomsj are identical since they are calculated from feature
point k.

An array of ligand models is generated in the manner described
above. The first model, a single point, is then tested at all configurations
in the host molecular field. Because a single point cannot be rotated,
the test is extremely simple. All configurations whose energy is lower
than a given threshold are marked to be kept for the next round of
calculation. In the current implementation, configurations that do not
demonstrate any avidity toward their binding site, i.e., their interaction
energy is not negative, are evicted from subsequent iterations. Among
the positions that are rejected from the next round are those that are
either too far away or too close to the host molecule to be considered
as likely docking configurations. Further, this simple test distinguishes
between potentially good (negative interaction binding energy) or poor
ligands. As more feature points are added the more implicit this
classification becomes. At each configuration that survived the first
round we test the second model. The second model is formed from
two points separated by a certain distance that is related to the
dimensions of the “main axis” of the ligand. The orientation of the
model is now important, and consequently each configuration has to
consider all possible rotations of the model. However, because the
model only contains only two points, the rotation is much faster than
attempting to rotate the complete ligand. Once more, all configurations
whose nonbonding energy is lower than a given threshold of the two
models are kept for the next round. It is clear that this second model
begins to filter out any configurations where the potential binding site
is not large enough to hold a molecule as large as the ligand. Repeating
these steps for the subsequent models removes more of the unsuitable
configurations. Eventually, we will end up with only a few of the
configurations surviving, usually long before we run out of models to
test. These surviving configurations show the regions where it is
possible for the ligand to dock successfully and the translation of the
docked ligand.

Results

To test the methodology a number of host molecules
complexed with ligands (Figure 2) were downloaded from the
Protein Data Bank (PDB).24 The ligands were deleted, and an

attempt was then made to find the correct docking site of the
ligands. In all test cases, we placed the host protein in a box of
dimensions 3 Å greater in each direction than the extent of the
protein. We employed a molecular grid with a 0.7 Å resolution,
and a rotation angle of 5°. A distance dependent dielectric
constant ofε ) 4r was used.

Streptavidin/Biotin. We utilized the streptavidin complex
with biotin25 (PDB entry 1stp; resolution 2.6 Å). The search
results are shown in Table 1 and Figure 3a. The distance
between the centroid of biotin in the crystal structure and the
centroid of its predicted conformation is 1.15 Å. The multiple
hydrogen bonds to N23, S45, N49, and D128 that are among
the factors that allow a tight binding to the protein16 (shown by
a dashed line) are persevered in our predicted conformation.
The quality of thepopulation of results was evaluated by
calculating the distance between the centroid of the five lowest
energy conformations and the centroid of the ligand in the crystal
structure, which is 0.93 Å in this case. Conjugate gradients local
optimization was then employed on the complex with biotin in
its predicted position. The protein’s atoms were held fixed, and
the ligand was allowed to move. The calculation converged after
356 iterations (12 s on R10000 single processor) when a
convergence criterion of 0.01 kcal/Å had been achieved. The
distance between the centroid of biotin in the crystal structure
and the centroid of its predicted conformation after the
minimization was reduced to 0.37 Å.

McPC-603/Phosphocholine.The immunoglobulin McPC603
Fab-phosphocholine complex26 was retrieved as PDB entry
2mcp. Since the force field was unable to assign reliable partial
charges to the phosphocholine ligand, its partial charges were
calculated with the Gaussian 98 program27 (Revision A.7) using
a Hartree-Fock calculation with the STO-3G basis set. The
distance between the centroid of phosphocholine in the crystal
structure and the centroid of its predicted conformation is 2.02
Å. The phosphocholine recognition by McPC-603 is predomi-
nantly electrostatic in character, primarily due to the influence
of Arg H52.28 As can be seen from Figure 3b, the distance
between the Nη1 in the positively charged side chain of Arg
H52 and the P atom in the negatively charged phosphocholine
moiety is 3.12 Å in the crystal structure, while in our predicted
conformation this distance is 4.66 Å. The distance between the
centroid of the 5 lowest energy conformations and the centroid
of the ligand in the crystal structure is 1.70 Å. Employing the
same minimization protocol as in the streptavidin/biotin test
case, convergence was achieved after 159 iterations (17 s on
R10000 single processor). The distance between the centroid
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of phosphocholine in the crystal structure and the centroid of
its predicted conformation after the minimization was 1.90 Å.

â-Trypsin/Benzamidine.The benzamidine-inhibitedâ-trypsin29

was downloaded as PDB entry 3ptb. The distance between the
centroid of biotin in the crystal structure and the centroid of its
predicted conformation is 1.68 Å. As can be seen from Figure
3c, the aromatic ring clearly fills the hydrophobic binding
pocket. The distance between the centroid of the five lowest

energy conformations and the centroid of the ligand in the crystal
structure is 1.59 Å. Again, the ligand was minimized and
converged after 894 iterations (25 s on R10000 single processor)
The distance between the centroid of benzamidine in the crystal
structure and the centroid of its predicted conformation after
the minimization was reduced to 0.38 Å.

Cytochrome P-450cam/Camphor. The PDB entry 2cpp30

contains a protoporphyrin group with Fe3+ and camphor.

(29) Marquart, M.; Walter, J.; Deisenhofer, J.; Bode, W.; Huber, R.Acta
Crystallogr., Sect. B 1983, 39, 480-490.

(30) Poulos, T. L.; Finzel, B. C.; Howard, A. J.J. Mol. Biol. 1987, 195, 687-
700.

Figure 2. Chemical formulas for the nine ligands selected as test cases.

Table 1. Results for the Protein-Ligand Complexes

distanceb between ligand centroid in the crystal and

protein PDB code resolution (Å) ligand

no. of
atoms in
liganda

initial no.
of translations

ligand centroid
in the lowest

energy
cofnormation

centroid of
the five

low energy
conformations

ligand centroid
in the lowest

energy conformation
followed by a local

minimizationc

streptavidin 1stp 2.6 biotin 31 257 816 1.15 0.93 0.37
McPC-603 2mcp 3.1 phosphocholine 24 984 528 2.02 1.70 1.90
â-trypsin 3ptb 1.7 benzamidine 18 353 920 1.68 1.59 0.38
cytochrome P-450cam 2cpp 1.63 camphor 27 772 500 0.62 0.85 0.54
HIV-reverse transcriptase 1vrt 2.2 nevirapine 34 2 666 664 1.15 0.95 0.32

1rt3 3.0 1051U91 36 2 666 664 1.62 0.90
1vru 2.4 R-APA 30 2 666 664 1.20 1.49

Human nuclear pregnane X receptor 1ilg 2.5
1ilh 2.75 SR12813e 75 709 152 1.20 0.65

a Including hydrogens.b Distances are given in Å.c Conjugate gradients minimization until convergence criteria of 0.01 kcal/Å is achieved where the
protein’s atoms are held fixed.d Ligand was docked to the apo-structure (1ilg) and compared to the complexed one (1ilh).e SR12813 can bind in three
distinct orientations. Results are shown for the first one.
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Because the force field did not contain proper partial charges
for the protoporphyrin group with Fe3+, the partial charges for
this moiety were calculated as before. The distance between
the centroid of camphor in the crystal structure and the centroid
of its predicted conformation is 0.62 Å. The distance between
the centroid of the five lowest energy grid points and the centroid
of the ligand in the crystal structure is 0.85 Å. Figure 3d
compares the low-energy solution created by the algorithm to
camphor in the crystal structure. The algorithm successfully
detected the translation of the camphor, and the correct
orientation of camphor was included in the low-energy popula-
tion but not ranked as the one with the lowest energy. We
employed the same minimization protocol as in the streptavidin/
biotin test case. The minimization converged after 677 iterations
(55 s on R10000 single processor). The distance between the
centroid of benzamidine in the crystal structure and the centroid
of its predicted conformation after the minimization was reduced
to 0.54 Å.

HIV-Reverse Transcriptase/Nonnucleoside Inhibitors
(NNIs). We utilized the PDB file 1vrt22 (resolution 2.2 Å) of
HIV-reverse transcriptase as a host molecule for this test case
and attempted to dock three non nucleoside inhibitors (NNIs).
The first inhibitor was nevirapine, which is complexed with the
protein in this PDB entry. The second inhibitor was 1051U91
taken from the AZT resistant HIV-1 reverse transcriptase
complex31 (PDB entry 1rt3), which included the mutations

D67fN, K70fR, T215fF, and K219fQ. The root-mean-
square (rms) deviation of the active sites (P95, L100, K101,
V106, E138, V179, Y181, Y188, G190, F227, W229, L234,
H235, and Y318, a total number of 130 “heavy” atoms) in these
two structures is 1.69 Å. The high rms value is due to Y181,
which adopts a different rotamer in these structures. The third
inhibitor wasR-anilino phenyl acetamide (R-APA) taken from
the PDB entry 1vru22 (resolution 2.4 Å). The rms of this active
site’s residues to the active site of 1vrt was 0.72 Å.

Three docking stages for nevirapine are shown in Figure 4.
The 20 000 lowest energy positions at the end of the first
iteration are shown in Figure 4a. It can be seen that this
population shows points either not too distant or too close to
the protein. Figure 4b shows the points remaining after the third
iteration. It can be seen that the remaining points converge to
various pockets in the protein. Figure 4c shows the remaining
points at the last iteration. Clearly, all points are focused in the
actual binding site. The distances between the centroid of the
ligand in the 1vrt crystal structure and the predicted conforma-
tion’s centroid with the lowest energy are 1.15, 1.62, and 1.20
Å for nevirapine, 1051U91, andR-APA, respectively. For the
five lowest energy grid points’ centroids, this distance is 0.95,
0.90, and 1.49 Å for nevirapine, 1051U91, andR-APA,

(31) Ren, J.; Esnouf, R. M.; Hopkins, A. L.; Jones, E. Y.; Kirby, I.; Keeling, J.;
Ross, C. K.; Larder, B. A.; Stuart, D. I.; Stammers, D. K.Proc. Natl. Acad.
Sci. U.S.A.1998, 95, 9518-9523.

Figure 3. Comparison between the predicted (shown in blue) and the crystal structure conformations (color codes: O) red, C) gray, N ) blue, S)
yellow, P ) orange) of the ligand. Protein shown as a red ribbon. Key: (a) streptavidin/biotin, with H-bonds shown by dashed lines; (b) McPC-603/
phosphocholine results; (c)â-trypsin/benzamidine; (d) cytochrome P-450cam/camphor.
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respectively. Analysis of the interactions between the active site
residues and the predicted positions of the inhibitors agrees with
the results published by Ren et al.22 showing that all three
inhibitors make extensive contacts (distance between “heavy
atoms”<4.0 Å) with Y181, 188 and Y318 as can be seen in
Figure 4e (6 atoms for nevirapine, 10 atoms for 1051U91, 8
atoms for R-APA). We employed the same minimization
protocol as in the streptavidin/biotin test case. The minimization
converged after 448 iterations (157 s on R10000 single

processor). The distance between the centroid of nevirapine in
the crystal structure and the centroid of its predicted conforma-
tion after the minimization was reduced to 0.32 Å.

Human Nuclear Pregnane X Receptor (hPXR)-SR12813.
The human nuclear pregnane X receptor (hPXR) plays a critical
role in mediating dangerous drug-drug interactions.32 Watkins

(32) Watkins, R. E.; Wisely, G. B.; Moore, L. B.; Collins, J. L.; Lambert, M.
H.; Williams, S. P.; Willson, T. M.; Kliewer, S. A.; Redinbo, M. R.Science
2001, 292, 2329-2333.

Figure 4. Search results on HIV-reverse transcriptase. Lowest energy grid points (shown in green) (up to 20 000 points). Protein shown as a red ribbon.
Key: (a) first iteration for nevirapine; (b) third iteration for nevirapine; (c) last iteration for nevirapine; (d) conformation of the predicted nevirapine conformation
shown in blue and conformation of the ligand in the crystal structure shown in yellow. (e) The interactions between various HIV-reverse transcriptase
inhibitors in their predicted position and the active site’s residues. Nevirapine is shown in blue, 1051U91 is shown in green,R-APA is shown in red, and
active site residues are shown in yellow. Hydrogens are not shown.
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et al.32 have recently solved the apo structure of the ligand-
binding domain of hPXR and the complex with the cholesterol-
lowering drug SR12813 at resolutions of 2.5 Å (pdb file 1ilg)
and 2.75 Å (1ilh), respectively. Strikingly, SR12813 can bind
in three distinct orientations.32 The distance between the
centroids of the orientations ranges between 1.35 and 2.44 Å.
The RMS deviation between the binding site (L206, S208, L209,
V211, L240, M243, M246, S247, F251, F281, C284, Q285,
F288, W299, M323, L324, H407, F410, F420, a total number
of 338 “heavy” atoms) in the apo and ligand-bound forms is
1.00 Å. To test if the algorithm can handle protein plasticity,
or a situation were the ligand is not well adapted, we employed
our program on the apo structure and compared the binding
results to the complexed one. The distances between the
centroids of the three SR12813 orientations in the complex
crystal structure and the centroid of its predicted conformation
were 1.20, 2.05, and 2.91 Å respectively. Subsequent 701
iterations using the above minimization protocol (147 s on
R10000 single processor) reduced the distances to 0.65, 1.11,
and 1.82 Å, respectively.

Heparin-Basic Fibroblast Growth Factor (bFGF). This
differs from the above test cases that involved small ligands,
since heparin is a biomolecule (extents of 24.05 Å× 13.68 Å
× 13.08 Å, 152 atoms) and we were interested in a qualitative
result. We utilized the pdb file 1bfc (2.2 Å resolution) containing
heparin hexamer fragment-basic fibroblast growth factor
(bFGF) complex.33 Unlike most complexes that fit the standard
“lock and key” paradigm, with the ligand and host exhibiting a
high degree of surface complementarity, the heparin-binding
site on bFGF is sterically ill defined.34 Instead it appears as if
the ligand is held in place due to electrostatic interactions
between the highly negatively charged heparin and its binding
site. The calculation started with an initial number of 219 356
translations. The binding site was clearly identified (Figure 5).

Discussion

We have devised a tool that is able to locate reliably the
binding site for a specified host-ligand pair. As demonstrated

by the results, we have been extremely successful in this aim.
In all quantitative test cases, except McPC-603/phosphocholine,
the distance between the centroid of the ligand in the crystal
structure and the centroid of its predicted conformation ranged
from 0.62 to 1.68 Å. Bearing in mind that the resolution of the
McPC-603/phosphocholine complex (2mcp) is only 3.1 Å, this
may hint that a distance of 2.02 Å is a sensible result. In the
case of hPXR/SR12813 the algorithm showed the best result
for the first orientation (1.20 Å) of the ligand. In addition it
showed reasonable results for the second (2.05 Å) and third
(2.91 Å) orientations as well.

Further we have shown that not only the lowest energy
solution but thepopulationof the low-energy solutions is very
accurate. In all test cases the distance between the centroid of
the ligand in the crystal structure and the centroid of its predicted
conformation population ranged from 0.85 to 1.70 Å. On
average, thepopulation results were better than the lowest
energy results. This fact suggests that the algorithm is consistent
and converges to one site-the binding site.

The McPC-603/phosphocholine and HIV-reverse transcriptase/
NNIs experiments represent a particularly harsh test of the
technique. The phosphocholine ligand is extremely small (11
“heavy” atoms) relative to the size of the McPC-603 (442
residues, 3401 “heavy” atoms). As can be seen from the crystal
structure data (PDB file 1vrt) and Figure 4, the HIV-reverse
transcriptase host molecule is an extremely large molecule (926
amino acids, 7625 “heavy” atoms) compared to the three NNIs
that we attempted to dock: 20, 22, and 21 “heavy” atoms for
nevirapine, 1051U91, andR-APA, respectively. Because of this
disparity in size it is likely that the host will present many
pockets into which the inhibitor could dock, in addition to the
true binding site.R-APA and 1051U91 are difficult test cases
since they are taken from a different conformation of the active
site and their bioactive conformation, despite their relative
rigidity, might vary to a certain degree among complexes.
Further, unlike other test cases such as McPC-603/phospho-
choline, the interactions between the host molecules and the
ligand are hydrophobic and not electrostatic. Although we are
comparing three different ligands, the small distances between
the centroids in the predicted and the crystal structure demon-
strate that the active site was successfully detected.

In addition to the translation, the orientation of the ligand in
the binding site was found in all test cases. In six out of eight,
it has been ranked as the one with the lowest energy. The first
exception was hPXR/SR12813, which is an ambiguous test case,
since there are three “correct” orientations. In camphor, the
correct rotation was included in the low-energy set of solutions
but not ranked as the one with the lowest energy. These findings
raise the idea that employing more sophisticated cost functions
than CVFF nonbonding energy terms, such as an empirical free
energy function that estimates the free energy change upon
binding16 or a finite difference Poisson-Boltzmann method to
represent the electrostatic properties of the molecules may yield
more accurate energies. In the current implementation we
employ a linear interpolation approach to obtain the energies
from the grid. Using a more sophisticated interpolation strategy
may further improve the results.

The current implementation of themultiscale approachis
conducted on a discrete search space. As a result, the accuracy
is limited both by the resolution of the grid and the size of the

(33) Faham, S.; Hileman, R. E.; Fromm, J. R.; Linhardt, R. J.; Rees, D. C.
Science1996, 271, 1116-1120.

(34) Bitomsky, W.; Wade, R. C.J. Am. Chem. Soc.1999, 121, 3004-3013.

Figure 5. Search results on heparin (shown as a stick model)-basic
fibroblast growth factor (bFGF). The surface of bFGF is shaded from red
(negative electrostatic potential) to blue (positive electrostatic potential).
Centroids are shown as spheres (yellow) ligand in crystal structure, green
) five low-energy conformations).
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rotation angle. We have shown that our method produces an
excellent starting point for rapid local optimization employed
on a continues search space using the same energy function.
As demonstrated by the results, in all test cases, except McPC-
603/phosphocholine, the distance between the centroid of the
ligand in the crystal structure and the centroid of its predicted
conformation after a short optimization ranged from 0.32 to 0.65
Å. Again, since the resolution of the McPC-603/phosphocholine
complex (2mcp) is only 3.1 Å, we find a distance of 1.90 Å as
a reasonable result. We have shown that the minimization
converges rapidly. Such results hint that the discrete search
method we employ locates the ligand in close proximity to its
“real” position and is reliable.

Most docking algorithms employ as test cases fixed structures
of enzyme and/or ligand as taken from the enzyme-ligand
complexes (PDB files). Here, one may raise the claim that there
is a bias toward locating the true enzyme-ligand complex when
scanning the interaction space. We have shown in two different
test cases that the algorithm can cope with protein plasticity. In
the HIV-reverse transcriptase/NNIs test case we have shown
that we can successfully dock ligands taken from other crystal
structures in a different bioactive conformation. In the hPXR-
SR12813 system we successfully identified the binding site in
the complexed protein where the input for our algorithm was
the protein in its unbound conformation.

Our approach offers several advantages over algorithms for
detection of pockets on the surface of proteins such as
LIGSITE.35 We have shown that instead of suggesting several
binding pockets that exist in a large protein such as the HIV-
reverse transcriptase, the algorithm is sensitive enough to detect
the correct one. Further, it is sensitive enough to position the
ligand in the correct binding orientation. The algorithm per-
formed well in the case of heparin-bFGF compelx where there
is a large ligand and no binding pocket.

Currently no attempt has been made to account for the
flexibility of the ligand explicitly. There are several reasons for
this: first, one must generate a series of likely conformers by
selecting a few low-energy conformations from a molecular

dynamics or Monte Carlo simulation of the ligand. Second, the
earlier models contain only the grossest structural information
of the ligand. Such coarse information is somewhat robust to
subtle changes in ligand conformation. It is felt that this
resilience will bestow the basic docking algorithm with a degree
of invariance to the ligand’s conformation, as hinted in the HIV-
reverse transcriptase/NNIs and hPXR-SR12813 test cases. The
extent of the model’s invariance to ligand flexibility and how
such flexibility could be readily incorporated into the process
would require further examination. Currently very few docking
procedures can take into account the flexibility of the host
molecule as a whole. Some techniques consider the residues
near the binding site to be flexible on the presumption that the
gross structure of the host will remain unaffected by the ligand’s
presence. Once more, it is felt that the coarseness of the lower
models may assist in providing a certain degree of invariance
to the conformation of the side chains in or near the active site.
Further work would be required to prove this point.

Conclusions

We have shown how the use of amultiscale approachenables
one efficiently to break a problem down into a number of small
steps. Dismantling a problem in this manner enables efficient
distribution of computing time so that only the most fruitful
areas are considered in any detail. We believe that the approach
introduced here has real value in exploiting the results emerging
from studies in structural biology and may evolve to become a
valuable tool to analyze the data from the structural genomics
projects.

The approach seems to hold great promise for the futuresin
this initial model the interactions between the enzyme and the
substrate are evaluated via simple nonbonding energy terms.
Despite that, the results are accurate, and the calculations
converge rapidly. This fact supports the ability of themultiscale
approachto represent the ligand in a reliable manner.

Acknowledgment. This work was supported by the Wellcome
Trust and partially by the National Foundation for Cancer
Research.

JA016490S
(35) Hendlich, M.; Rippmann, F.; Barnickel, G.J. Mol. Graph. Model.1997,

389, 359-363.

A R T I C L E S Glick et al.

2344 J. AM. CHEM. SOC. 9 VOL. 124, NO. 10, 2002


